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MUSICAL MODULATION

BY SYMMETRIES

Daniel Muzzulini

The symmetry-oriented model of musical modulation developed by G.
Mazzola (1985, 1990) is applied to arbitrary scales of seven different tones
in twelve-part equal-tempered tuning. For each of the sixty-six different
translation-classes of such scales, all possible transitions have been com-
puter generated according to the model. A comparative evaluation of the
data exhibits special characteristics for the most common musical scales: the
diatonic major scale, the melodic minor scale and the harmonic minor scale.

I. Introduction

Recently the concept of symmetry has been applied to music theoret-
ical problems with success (Mazzola 1990). For example, counterpoint
and the theory of modulation pose challenges for mathematical music
theory. In both cases, modeling analogous to that of modern physics,
using symmetries to explain transitional forces, leads to questions about
the existence of local symmetries in counterpoint (Mazzola 1989) and of
quanta in modulation theory (see “Modulationsquant” [Mazzola, 1990,
200-011). And in both cases one can interpret results as generalizations
of classical music theory.
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d-sharp =3
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Figure 1

The modulation model developed in Mazzola 1985 provides direct
modulations (for all degrees of relationship in the cycle of fifths) between
the most common musical scales in 12-part equal-tempered tuning, and
thf: obtained modulations for the classical degrees of relationship agree
with classical theory (Schoenberg 1911). A similar model has been
developed for just tuning (Mazzola 1990), but we adhere to the equal-
tempered tuning in this article. Here, we extend the model to include
arbitrary scales consisting of seven tones, thus providing a harmonic
basis for the use of uncommon musical scales in composition and a point
of departure for further investigation.

II. Triadic Interpretation of Scales
We interpret a scale s of seven different pitch-classes as a (seven-ele-
ment) subset of the cyclic group Z,,. We view Z,, as being the set of

pitch-classes defining the 12-tempered chromatic scale. To simplify, we
shall speak of “tones” instead of *“pitch-classes.” Tones will be denoted
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Figure 2

asc=0,ct=1,d=2, and so forth. We can represent Z,, as the circum-
ference of a clock-face. Starting with an arbitrary tone ¢,, the “tonic” of
s, we number the tones of s in clockwise direction: #1,¢,...,17. Figure 1
shows a scale (No. 62 from the Appendix in Mazzola 1990) consisting of
seven tones marked by dots and numbered in clockwise direction.

For n = 1 to 7, we define the triad on the n-th degree of s as being the
set s, containing the three tones f,, 42 mod 7 A0 Lss) mod 7- Thus s, =
{11.13,55}, 52 = {tnstarte}s - » 57 = {tn.t2,t4}. The covering of s by the seven
triads sy, $s, ... . 57 is called the triadic interpretation of s and will be
denoted s® according to Mazzola 1990. Clearly, s**' is independent of the
choice of the tonic. The “nerve” (Mazzola 1990) of a triadic interpreta-
tion s of a scale s is a Mobius strip (Figure 2). The nerve is constructed
as follows: The triads sy, 82, .. , s70f s are represented as dots. The dots
of two triads are connected by a line if their triads have a non-empty
intersection. Three triads with a non-empty intersection are connected by
a triangle. Four triads with non-empty intersection would build up a tetra-
hedron and so forth, The construction may be applied to arbitrary cover-
ings of sets (Mazzola 1990).

The triadic interpretation of “exotic” scales can also be deduced by
altering the canonical triadic interpretation of diatonic scales; the alter-
ations must be made in such a way that no tone crossings occur (e.g., not
altering e to ef and f to f» at the same time) so as to preserve the ordered
numbering of the tones.
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III. Cadence-Sets

Two scales r and s are said to be of the same translation-class if there
is a translation on Z,, which transforms r into s. Translation by p semi-
tone-steps is here denoted by e” in order to obtain the “exponential law”
e”-e? = e”*4 for two successive translations. (The translation e” is defined
by e”(x) = x+p.) Note that a translation corresponds to a rotation of the
clock-face.

A subset y of triads of s is called a cadence-set of s if there is no
other scale r of the same translation-class such that the elements of u are
also triads of 7. The cadence-set u is called a minimal cadence-set if no
proper subset of 4 is a cadence-set. We introduce cadence-sets because
they allow us to distinguish between scales of the same translation-class
without having to enumerate all of their tones or triads (Mazzola, 1990).

Examples

(As usual we denote the triads of the diatonic scales with roman
numerals, and we index the key if necessary. For instance, IV¢ denotes
the triad of the fourth degree of C-major.)

I. A diatonic major scale has the following minimal cadence-sets:
{IL, 01}, {111, IV}, {IV, V}, {II, V}, { VIL}. The set {I, V} is not a
cadence-set, for Ic =IVg and Vc=1Ig. The set {I, IV, V} is a cadence-
set but not a minimal one.

2. For the harmonic minor scale, each pair of triads from its triadic
interpretation forms a minimal cadence-set. Therefore, there are 21
different minimal cadence-sets for a harmonic minor scale.

We have generated by computer the cadence-sets of the 66 translation-
classes. They will be used to calculate modulations between the scales of
a given translation-class. The calculus of cadence-sets may be restricted
to representatives of the 38 seven-tone scale-orbits under the action of the
group of translations and inversions. Appendix 1 lists these 38 scale-
orbits representatives and their respective numbers of minimal cadence-
sets. (The scale-orbit numbering follows the more complete listing in
Mazzola 1990.) The number of minimal cadence-sets (given in column
2) varies between 5 and 21. Only the harmonic minor scale (No. 54.1) has
21 minimal cadence-sets. Next most plentiful are the cadence-sets of
scale-orbit No. 58 with 18 minimal cadence-sets, and scale-orbit No.
47.1 (the melodic minor scale) with 15 minimal cadence-sets. There are
three scale-orbits with only 5 minimal cadence-sets: No. 38.1 (the dia-
tonic major scale), No. 52, and No. 62.
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IV. Inner Symmetries of Triadic Interpretations

In the present context, invertible affine transformations on Z;, are
called symmetries. They are written in the form e”u with p in Z,, and u
invertible in Z,, (¥=1,5,7, or 11) and defined by eu(x)=p+ux. The inner
symmetries of a scale s are the symmetries leaving the set s invariant.
They define the symmetry group of s. A scale with trivial symmetry group
is called rigid.

Examples

1. The C-major-scale {0, 2, 4, 5, 7, 9, 11} has a unique non-trivial
inner symmetry e*1 1, the inversion at d=2.

2. The harmonic minor scales are rigid.

3 .The scale {0, 1, 2, 4, 6, 8, 10} has the following three non-trivial
inner symmetries: e®5, %7 and e’11.

A classification of all subsets of Z,; under the action of the full group
of symmetries is available in Mazzola (1985). For the scales of seven
tones we may refer to Appendix 1.

The concept of inner symmetries may be carried over to triadic inter-
pretations (Mazzola 1990). An inner symmetry f on s is called an inner
symmetry of the triadic interpretation s, if for each s; in s, f(s;) is also
a triad of s@. A triadic interpretation s is termed rigid, if the symmetry
group of s is trivial. We have the following results:

Lemma

(1) Any inversion in the symmetry group of a scale s induces a sym-
metry of s,

(2) The only possible non-trivial inner symmetries of triadic interpre-
tations are inversions.

In particular, a triadic interpretation s is rigid, if and only if the sym-
metry group of s contains no inversion. (The inversions take the form e’u,
where u=11.)

Examples ‘
1. The inner symmetry e*11 of the C-major-scale C operates on the tri-
ads of C¥ as follows:

I - VI VI —» 1
111 - IV IV — I
A" - II II - V
vii — VI
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2. The inner symmetry €5 of the scale s = {0, 1, 2, 4, 6, 8, 10} is not
an inner symmetry of s, since the image of s, = {0, 2, 6} under e?5
is {8, 6, 2}, which does not belong to s

3. Property (1) would no longer be valid if arbitrary numberings of the
tones of scales were used to construct more general “triadic inter-
pretations” of scales. For instance, number the tones of C-major as
follows: 1,=0, r,=2, 13=5, t4=4, t5=7, 1,=9, t;=11. Then the inner
symmetry of e*11 maps 5,={0, 5, 7} to {4, 11, 9}={1y, ts, 17}, which
is not a triad in this “interpretation” of C-major.

V. The Concept of Modulation in the Light of Symmetries

Arnold Schoenberg (1911) defines modulation as a tripartite process:

A B C

old key new key new key
neutral triads pivot root-progressions (in  cadence

to weaken the German Fundamentschritte)  to establish
old key to mark the turning point the new key

It is of special interest to determine suitable pivot-progressions for a
given pair of scales, s and r=e”(s). By analogy with particle-physics, we
will interpret modulations by hidden symmetries, which are supported by
a “quantum” (see “Modulationsquant” [Mazzola 1990, 200-01]). Fol-
lowing Mazzola 1990, the explicit construction of the quantum will per-
mit the calculation of the pivot-progressions.

We define a modulator for the pair (s@,r®), where r=e”(s), to be a
symmetry g which transforms the triadic interpretation s* into the triadic
interpretation #*, Modulators can be written in the form g=e”f, where f
is an inner symmetry of s*. Hence, by statement (2) of the Lemma the
only candidates for modulators are translations and inversions.

Fix a minimal cadence-set u of the target scale r. This being done, we
propose a system (£,) of properties that define particular subsets Q of Z;,,
which we call the modulation-quanta:

3 which is an inner

(1) There is a modulator g for ¥ and r
symmetry of Q.

(2)y All triads of p are subsets of Q.

(£,) 1 (3) The only inner symmetry of rnQ of the form e”u, for u

=1 or 11 (translations or inversions), is the identity, and

rMQ is covered by triads of r,

L (4) Qis a minimal set with properties (1) and (2),.
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Figure 3

The main problem with this modulation model is the question of the
existence of quanta. But let us first discuss their properties in detail, in
order to understand this conceptual construction.

Point (1) requires that the modulator is materialized in Q. Point (2),
guarantees that Q has enough tones to capture r® uniquely by the
cadence p. Point (4) expresses our interest in finding the most economi-
cal modulations. Because of (3), the modulator from (1) is uniquely
determined by @ and the pair (s, r**)). On the other hand @ is recon-
structible from the modulator and the triads of r® lying in Q, since rnQ
is covered by triads of ® and because of the minimality of Q.

The pair (4,g) of minimal cadence-set p and modulator g is called a
modulation from s® to r®. We say that a modulation (,g) from s to
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r®is quantized if there is a quantum Q having the properties (£,). The
triads of r® lying in Q are called the pivots of this modulation. They may
be seen as the “trace” of the hidden symmetric quantum, which is
“detected” in the target scale. Figure 3 shows the nerves of the triadic
interpretation of two quanta for melodic minor scales. The nerves are to
be constructed as in Figure 2; we have to investigate all intersections of
two or more triads of s@ and r® lying in Q. In Figure 3 (a) p=1 and
= {IIL, VI} resp. = {V, VI};in Figure 3 (b) p=3 and p = {1V, VII} (tetra-
hedrons: (77, 12, $2, S4) and (72, ra, Sa, S¢): triangles: (s2, 54 S6) and (r7, ry, 4)
but not (r2, 2, 56)). (The nerves for all possible quanta for diatonic major
scales are illustrated in Mazzola 1990, 203.)

V1. The Modulation-Theorem

We can now establish the modulation-theorem for arbitrary scales of
seven tones, which generalizes the synonymous theorem in Mazzola
1990. It describes the system of all quantized modulations. As mentioned
above, it is sufficient to consider one representative for each scale-orbit
from our list in Appendix 1.

Theorem

(1) Scales with rigid triadic interpretation:
For each scale s of the 28 scale-orbits with rigid triadic interpre-
tation, and for arbitrary p, there exists at least one quantized mod-
ulation for s and r'® = e?(sY).
The maximum of 226 quantized modulations occurs for scale-orbit
No. 54.1 (the harmonic minor scale), while the minimum of 53
quantized modulations occurs for scale-orbit No. 41.1

(2) Scales with non-rigid triadic interpretation:
For scale-orbits No. 52 and No. 55, there exist quantized modula-
tions except for p=1 and p=11. And for scale-orbits No. 38 and
No. 62 there exist quantized modulations except for p=5 and p=7.
The 6 remaining orbits have at least one quantized modulation for
each p.
The maximum of 114 quantized modulations occurs at scale-orbit
No. 47.1 (melodic minor scale). Among the scales with quantized
modulations for each p the minimum of 26 occurs at scale-orbit
No. 38.1 (diatonic major scale).

We have used a computer program to calculate the quanta and pivots
as follows: For a given pair (s, r® = e”(s¥)), choose a corresponding
modulation (41,g). Then there is exactly one subset Q of Z.,» which fulfills
(1), (2),, and (4) from (£,). (Q is the orbit of tones of 1 under the group

318

of symmetries generated by g). This candidate is rejected if (3) does not
hold, and we may choose a new modulation.

Lists of all quantized modulations for diatonic major scales, melodic
minor scales, and harmonic minor scales are given in Appendices 2, 3,
and 4 respectively.

VII. Discussion

Different minimal cadence-sets may produce the same quanta for a
given p. This is the case for the minimal cadence-sets {11, V} and {IV, V}
of the diatonic major scale and for p = 2. If s**' is not rigid, the two pos-
sible modulators can produce the same pivots with different quanta. In
this case the presentation of the pivots is not sufficient to recover the
modulator. For the diatonic major scale, this happens for p = 6, those
modulations which have to surmount the greatest “tonal distance.”

Within the groups of rigid (and respectively, non-rigid) triadic inter-
pretations, the number of quantized modulations essentially increases
with the number of minimal cadence-sets. Given the number of minimal
cadence-sets, the scales with rigid triadic interpretation have generally
more quantized modulations than those with non-rigid triadic interpreta-
tion.

It must be noted that for rigid triadic interpretations, withp =1, 5,7
or 11, the same quantum always occurs, the whole set Z,»; it is the only
non-empty subset of Z,, whose symmetry group includes a translation of
e’ forp=1,5,7, or 11. Therefore, in the rigid case every cadence-set pro-
duces all seven triadic degrees as pivots forp=1,5,7, or 11.

For each given scale-orbit, we can add the numbers of different quanta
occurring in the quantized modulations for variable p (see column 3 in
Appendix 1). Then we obtain the following extremal numbers of quanta:

rigid: minimum 13 No. 51
maximum 32 harmonic minor scale (No. 54.1) and
No. 54

non-rigid: minimum 20 diatonic major scale (No. 38.1)
maximum 66 melodic minor scale (No. 47.1)

Discussion of distinguished scales with rigid triadic interpretation

Scale No. 51 (****0**00*0) has 9 minimal cadence-sets. There exists
a quantum only for p = 4 and p = 8, which does not allow all triads as
p1vots.

The harmonic minor scale, No. 54.1 (*0**0*0**0*) allows quantized
modulations for p = 1, 5, 7 and 11, and also for p = 2, 10. For these val-
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ues of p, and for any cadence-set, all seven triads are allowed as pivots.
For the remaining values of p, there are several quanta:

p=39: 3 quanta, each p
p=4,8: 7 quanta, each p
p=6: 6 quanta.

The scale No. 54 (*#**(**00*00), with only 7 minimal cadence-sets,
is the “richest” scale with rigid triadic interpretation:

2,3,9,10: 3 quanta, each p
4, 8: 6 quanta, each p
6: 4 quanta.

TS
I

]

The triadic interpretation of scale No. 58 (**0**0**0*00) is rigid and
has 18 different minimal cadence sets. It is one of the four scale-orbits
with no (two) successive half-tone-steps; the others are the diatonic
major scale, the melodic and the harmonic minor scale. With the impres-
sive number of 185 quantized modulations, this remarkable scale is sec-
ond only to the harmonic minor scale. However, it has only 17 quanta,
namely 4 different quanta for p = 4, and for p = 8, and the quantum is Z,
in all other cases.

Discussion of distinguished scales with non-rigid triadic interpretation

The melodic minor scale, No. 47.1 (*0**0*0*0*0*) has 15 minimal
cadence-sets and the following numbers of quanta:

p=1,11: 6, each p
p=210 3,eachp
p=3,56,7,09: 4, each p
p=4,8 14, each p

The diatonic major scale optimizes uniqueness of quanta:

pi=ils 308, 7,9, L1 1 quantum, each p
p=2.10: 2 quanta, one a subset of the other, each p
p=4,8: 3 quanta, one in the intersection of
the others, each p
p=06: 4 guanta, but only two different sets

of fundamentals.

The pivots for the diatonic major scale agree with those proposed by
Schoenberg (1911) in all cases in which he indicates direct modulations
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(see Mazzola 1985). The model has been applied with success in the
analysis of difficult modulations of Mozart, Beethoven and Debussy
(Mazzola 1990) and to the composition of a sonata (Mazzola 1985).

VIII. Musicological Context

It must be pointed out that this model of musical modulation need not
refer to changes of tonal function of triads, nor to alterations, nor to
melodic considerations. This approach realizes a theory of harmony com-
pletely restricted to vertical structures. In this respect that model is com-
parable with the system of Arthur von Oettingen (see Oettingen 1913,
Rummenhéller 1967, and Vogel 1966), which is based exclusively on tri-
adic structures. Although Oettingen’s conceptual system is completely
symmetrical, his use of symmetries to describe musical processes is very
restricted. In fact, his fundamental chord progressions can be interpreted
as symmetry transitions: the “homonomic fifth-step” as a translation and
the “antinomic alternation” as a rotation in the two-dimensional lattice of
pitch-classes in just tuning. Modulation itself is not conceived as a sym-
metry transition. Oettingen instead depends upon theories of triadic tonal
function. Hugo Riemann (1905) and Sigfrid Karg-Elert (see Schenk
1966), who adapt some of Oettingen’s ideas, also do not pursue this sym-
metrical concept. Riemann is closer to classical theory in his adumbra-
tion of alterations and melodic considerations.

To conclude, we should stress that this model can easily be adapted to
different, more general situations, including just tuning, more general
interpretations of scales, and microtonal tunings. It is an open question
whether this theory can be extended to modulations between scales in
different orbits.
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Appendix 1
Scale orbits and number of quantized modulations

No. s ( @ & 4)
38 FkFEEEE00000 eb11 9 42 54 Q)]
38.1 *(FQFF0*0*0* etll 5 20 26
47 *QEEREEQRO00 e®ll 6 28 30
47.1 *Q**0*Q*0*0*0 e?l1 ks 66 114
50 *EQEEEQF000 cal| 7 34 42
50.1 FEEQFEEQ0*00 eb11 6 36 46
52 FEEQEQFFF000 e811 5 24 24 (H
55 #AEEE()*0*00 e*ll 6 30 32 (1
61 *FEEQOFEQ*+00 e’l1 10 38 62
62 *FERQFOFEOFO*0 e?11 5 24 24 ("
39 HEEFEE()F0000 9 29 93
39.1 HOHEEXOXOFO0 6 23 55
40 HREAE (0000 10 24 108
40.1 *EEQRQE*0*00 7 26 72
41 HEFQEEE0000 ) 25 75
41.1 *EEH)FOFE00 6 21 53
42 *EEEEE00+000 6 22 54
42.1 *EEQEEQE0F00 7 28 74
43 *EEEEQF0F000 6 22 57
43.1 wEEE)EQEO*00 i 26 72
44 FEEFQFEQF000 9 23 89
45 FEEQFEEQF000 7 2 63
45.1 FEQFEEEQF000 10 21 105
46 *EQFREEQF000 6 26 56
48 FrAAEQOF*000 10 23 109
48.1 *EHQO*F*0*00 7 28 68
49 FEEQEE)FF000 7 2 71
49.1 FEQOFEEEQFO0 7 26 74
51 FHEEQOFEF000 9 13 86
53 FEEFFOF00*00 7 27 67
53.1 FOFEEQER)F00 9 25 91
54 FEEEQFEQ0*00 7 32 71
54.1 *(pEEQFQOFF00* 21 32 226
56 *EQEEEQ*0*00 7 2 70
S *EEE()QEF0+00 8 21 71
58 *EQERQFF0*00 18 17 185
59 FEQEQFEX0F00 11 22 101
60 *EEQEEQO**00 6 21 60

(1) symmetry of s'*; (2) number of p; (3) number of quanta; (4) number of quantized mod-
ulations; (!) not for every p quantized.

The numbering of the scale-orbits follows the numbering in [Mazzola 1990]. The scales of.
the orbits x and x.1 belong to the same orbit under the action of the full symmetry group of
Z.
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Appendix 2 Appendix 3

Quanta and pivots for the modulations between diatonic major Quanta and pivots for the modulations between melodic minor
scales (No. 38.1) scales (No. 47.1)
P u o g pivots P M 0 g pivots
1 {IL, V} e S IL, 111, V, VII 1 {ILIV), (IV, VII} #akQRR00%%Q 311 I, IV, VII
{11, T} e S IL, 111, V, VII {IIL, VI}, {V, VI} e (e I, 111, V, VI
ROk () E kR R ()R
2 {vii} 000000 &1l IL IV, VII j{{} \\,[ i” *22*08****20 ﬁl‘x’ Y,HVH
(L), OFQH0i0R08 el IL IV, V. VII (11, 1) HoQ e IL IIL, V, VII
{1V, V} QFFQFRQ*F(* e®11 I IV, V, VII (L, VII} sk e s s ) e s ok ) e I, 11, V, VII
3 2 e f—';i : L 2 (1L V), (IIL, VII}, {IL 1T} RRQEER0X0¥0% ] ILIIL V, VII
{11, 111} 0*00*0** = IL 1L V, {IL IV}, {IL VI}, {1, II} *XQ**0*0*0* LI IV, VI
4 {VII} 00#*RQ*00*0* e811 V, VII {I, III}. {IIL, VI}, {IIL, IV} OF**0*(*0*0* I, IIL, TV, VI
{IV, V} 2:::8:::2:8* Ezli ﬁ {H ‘\7{ \\111111 3 (LL V), (IIL VI}, {V, VI}, {I, V} *0**0%**Q0%* e511 I IIL V, VI
{IL, 111} el p ML (IL IV}, {1V, VII} #+*Q*00* +00 IL IV, VII
5 (v 00*0**0*00** €11 IL IV, VII {1, 111} 00**00**00** L I
{IV,V]) FQHEQEQRR () IL, IV, V, VII
6 {11, 111} QF bk b I 1L, vV, VII
(IV, V) (i ttt sk tokie ok () elo]] 11, IV, V., VII 4 {ILV} *00%00**000* e®11 1LV
{1V, V} sskokok () sk ok () b 11, IV, V, VII {1, IIT} 00*+**+00*000* L III
(11, 111} sokokoR () () e elol] 11, 111, V, VII {I1, VI}, {L, 11} BAROAARR N * LIL IV, VI
{1V, VII} Hdkkk*00*00 IL IV, VII
7 {VII} #*00*FF00*0* e''ll IIL vV, VII {111, VI} Q£ QQ0* I III, VI
. (v} DRHOOROT G e IL VI {111, VII) *00*00**(0* 0 0L, V, VII
(IV, V) e L IL, IV, V, VII il L L I, VI
2 ; s e {IIL, IV} [Vl Vi Vil Vi L III, IV, VI
{11, 111} FERR(PEQEQER> ell1 IL 1L, vV, VII . 3 et
d {11, TIT} *EOEQEEEGHQF 1L, 111, vV, VII
9 (I, V} QQ* Qe ek () elll IL IV, V, VII {1, VII} FQFHE(EF()F(* LI, Vv, VII
(IV, V) OOtk el I V. V, VII et A e
) € 3
10 {VII} #*EQEO00*0* e’ll 1L V, VII (III, V} 00#*Q0**()(H* 1L v
{II, V} #FEQEQFQ*FQ* e’ll IL II0L, Vv, VII (III, VII}, {11, I} (rsear(okok ok IL, III V, VII
(11, 111} #OEFQFOFQFO* elll IL 1L, V, VII (III, VI}, {IIL, IV} Fok ok ik ok L III, IV, VI
11 (IL V) Bl Tkttt e'll IL IV, V, VII B (LII}, (L V}, {IIL, VI}, {V, VI}  *Q###xQ%x00% e7]1 I IIL, V, VI
{1V, V} Ok QREbxREER e'll 1L IV, V, VII {I1, VI}, {I, II} FYFRQOFQFFHFE LI IV, VI
{IVv, VII}, {IV, V} F (AR (R ()R E() IL IV, V, VII
{III, VII} H(H QR H Ak 111, V, VII
6 ({IIL, V), (1M, VII}, {11, 11T} RROHRQRQRxRO* @811 I IIL 'V, VII
{L TIT}, {10, VI}, {IIL, IV} QXFEQFEFQXQF I, ITL, TV, VI
{I, I}, {11, VI}, {111, IV} FROEQFEEQEQF b LIIL IV, VI
{IIL, V}, {11, VIL}, {II, 111} Wi il b 2 I L V, VII
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{1, V}, {1, V}, {IIL, VIT}, {1, VII} #0**00*=Q**+ 911

{IL, VI}, {I, I}

{Iv, VII}, {IV, V}

{111, VI}

(1L, V}
{1, 111}
I, VI}

111, VI}
{11, VIT}
[V, VI}
{IIL, IV}
{11, 11}
{1, VII}

{1, 111}
{1IL V}

{111, VIII}, {II, 111}

{III, VI}, {II, IV}

{11, V}
{IL IV}, {11, VI}

{L I}, {I, V}, {111, VII}, (I, VII}

{111}

{11, V), {111, VIT}, (I, I}
{11, IV}, {1V, VII}, {IV, V}
(L, I}, {110, VI}, {IIL, IV}

(1L, TV, (1L, VI

{
{IV, VII}, {IV, V}
{

H(PRQFH(F(QFFH
)k ()X ()()
Vit ) Vi

*00*000*00**
00**000**00*
***OO*UO****
gk E() R EF()
00*+Q*0**00*
**O*OOO*O***
*O**O*D**O**
0***0*0***0*
**0*0*0*0***

****OOO*****

*00$*00$*00*
00**00**00**
SRR LR R
**D***O***O*

#O0**00**Q0*
*0*00**00*0*
R(EE QR R R
() R(HH k(R *

*x(PRQFQFQFOF
()R QR
Qs () (k%

s E()RE((ERQF
QO *k xR E
ek (o () ok
ek ok () ok e () ok
(st ok sk s ok
ok ok () ok o ()

el%11

ellll

e’l1

e'll

L IIL V, VII
LIL IV, VI
IL IV, V, VII
L, III, VI

1L v

LI

II, IV, VI

IL IV, V, VII
L, III, VI

III, V, VII
LTI V, VI
LI, IV, VI
I1, 1L, V, VII
I 1L V, VII

I, 1L
1L, v
IT, 1L, V, VII
LI, IV, VI

11Y
11, IV, VI

I I, V, VII
L II1, IV, VI

11, IIL, V, VII
IL IV, V, VII
L III, IV, VI

IL IV, VI

L III, VI
ILIIL V, VII
I IIIL, V, VI
I IIT, IV, VI
LIL IV, VI

Appendix 4
Quanta and pivots for the modulations between harmonic minor
scales (No. 54.1)

P p Number Q pivots
3/9 1,3,6,8,10, 11, 15-20 ErResRbb R A L IL IIL, IV, V, VI, VII
2,4,7,9, 14 #QERRQERQEEQR L TV, VI, VII
5 12 QFFQFFQ**Q** IL V, VII
4/8 0,7,12,14-17, 19 phiciuntoi bty I, II, IIL, IV, V, VI, VII
146,13 *00**00**00* L1, VI
2 ***O***O***O H!IV
3 00**00**00** 1L v
4,11, 18 A()mm SRRk L III, TV, VI
5,10 [0 attd O ill Dbt IIL V, VII
8,20 EOFEXRRS(F* L IIL, V, VI
6 2.7 *O*00F*0*00* II, IV, VII
3,10, 17 (0l Vi Vi Vg I1, 111, V, VII
4,9, 14 il R Vel 0 II, IV, VL, VII
S8L0 0**0Q0*0**00* II, V, VII
8,11, 13, 15, 16, 18 AR RORRE L LIL 1L IV, V, VI, VII

19 ®K((RRER()*
p=i,2,5,7, 10,11

II, IV, V, VII
L IL 1L IV, V, VI, VII

sk ok skoksk ok koo

Numbering of the minimal cadence-sets:

O IL VAL 1 ;1,0 2 S{LIv) 38 :(HEVE 4 - (IV, Vi)
5 {V,VII} 6 :{LVI} 7 :{IV,Vl] 8 :{LV} 9 :{ILVI}
10 {IIL VII} 11:{LIV} 12:{ILV} 13: {IIL, VI) 14 : {VL, VII}
15:{L,VII} 16:{LI} 17:{ILOI}  18:{ILIV} 19:{IV,V}
20: {V, VI}
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