Tempo Modifications and Spline Functions
Daniel Muzzulini 1993

I Modifications of ﬂf time flow and related tempo modifications
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Let Go: Ei<Ea2<...<E: be a fixed sequence of symbolic onsettm’ies and
eo(Ei), i=0,...,r a physical reference-interpretation of the Ei. We wxll study.”
modifications of the reference-interpretation, which are given in form of
differences of physical onsettimes zi as follows:

Ei -> eo(Ei) > eE)=eE)+z (F)
‘ i=0...r and zo=0

It is our task to describe such modifications in terms of reciprocal tempo
functions Ro(E) and R(E) with respect to eo and e. In order to get
welldefined (reciprocal) tempo functions, we could interpolate the discrete
functions of onsettimes eo(Ei) and e(Ei) as appropriate differentiable
functions defined on R and explore (the reciprocal of) their first derivatids.
In practice, however, we start with a given tempo function To and with the
data of "local translations” z0=0, z1,...,zr and we are looking for a modified
tempo function T such that the conditions (*)iare satisfied. In the
. subsequent we request that 1/To=Ro and 1/T=R are spline functions of
bdegree n defined on R and R(E)=Ro(E) if E is not in (Eo,E:r). This implies
e(E) = eo(E) for E < Eoand e(E) = eo(E) + zzforE 2 Er.

If we requested from T and To (instead of R and Ro) to be spline functions
of degree n, the occurmg integrals of rational functions in general could not
be calculated explicitely. And yet in the case of n = 1, where explicite
integration is possible, we would have to solve numerically a non-linear
equation for every interval [E;j,Ej] in.order to determine T piecewise.

If R and Ro are spline functions, all problems considered here can be
solved by solving linear equation systems..Then the related time flows e
and eo are also spline functions and can be evaluated by evaluating
polynomials - no numerical integration is hereby needed.

Lemma (a space of spline functions)
Let M(n,G) be the set of spline functions of degree n with the sequence of
knots G: xo<x1<...<xm (m>n), which are 1dent10a1 zero on the complement

of the interval [xi Xm), 1. €.
&




M={ g:R >R/
g is n-1 times continuously differentiable,
glixi, xi+1)=Pil[xi,xi+1)> Pi=polynomial of degree <n, i=0,...,m-1,
g(x)=0 if x € R\[x0,xm)}.
Then M(n,G) is a vector space of dimension m-n.

Proof:

(1) M(n,G) is a vector space:

Since M(n,G) is a subset of the space of all functions on R, M(n,G) is a
vector space if linear combinations of elements of M(n,G) are also
elements of M(n,G). This is clear.

(2) dim(M(n,G))=m-n
The space N(n,G) of all piecewise polynomial functions of degree < n with
the knot sequence G : x0<x1<...<xm, which disappear outside of [x0,xn), has
dimension m(n+1) and M(n,G) is a subspace of it. (We have m
independent polynomials of maximal degree n, that means m(n+1)
independent coefficients for the polynomials, which form an element g of
N(n,G)).
Let us consider the linear independent conditions on a g in N(n,G) that
guarantee that g is also in M(n,G). These conditions are the followmg :
Po®(X0)=0=pm.1®(Xmn), k=0,....n-1 at the boundqnes of G bewrdaritt
Pi®(X341)=Ps1®(Xi41), k=0,...,n-1, i=0,...,m-2 on the inner knots.
The number n(m+1) of these conditions is equal to the rank of the linear
system S for the "unknown" coefficients aij of the m polynomials pi, which
form g and therefore
dim(M(n,G))= dim(N(n,G))-rank(S)=m(n+1)-n(m+1)=m-n .

To solve our problem we are looking for difference functions of reciprocal
tempo functions, which belong to a suitable space of the form M(n, G) of
the lemma. Supposing that the reciprocal reference tempo function R is an
arbitrary spline function of degree n, it is guaranteed that also R is a spline
function of degree n.

Define f(E) := e(E) - eo(E), then the conditions (*)i for e are equivalent to
the following conditions (**)i for f:

f(Ed=z, i=0,.,r (F*)
From differentiation we get 1/T(E) = 1/To(E) + f(E) or with R(E) := €'(E) =
1/T(E) and Ro(E)=eo(E), the reciprocal tempofunctions, R(E) = Ro(E) +



f(E). We request that g:= f'= R - Ro is in a suitable M(n,G) and
{Eo=x0,E1,...,Er=xm} are elements of G such that (**): are fulfilled. (**)
become now conditions for the definite integrals of g on the r intervals
[Eo,Ei]:
| Ei .
Jg(t)dt =Zi-2Z0=Zi
ED

respectively on the intervals [Ei,Ein]:
Ei+1

fg(t)dt = Zi+l - Zi.
Ei

We must choose G (dependently of n) such that these conditions can be
formulated as r indepent linear equations in the coefficients of the
polynomials, which form g. With aid of the lemma we get the following
result

Theorem

If we add n arbitrary new knots in the inner of the given knot sequence Go:
Eo<Ei<...<FEr to define G (Bo=Xo<X1<...<Xrm1<Xrn=Er), our interpolation
integration problem (**)i, i=0.,...,r is uniquely solvable with g=f" in M(n,G).

Remarks:

(1) 1/T is a spline function of degree n, if 1/To is a spline function of
degree n. (The knot sequence of 1/T is G plus the knots of 1/To not
belonging to G.)

(2) The corresponding time functions eo and e are in this case spline
functions of degree n+1.

(3)  The values e(X;), Xjin G\Go are determined by the interpolation!

(4) For arbitrary n+r+1, knots not containing Go our problem is not
always solvable. If we- llked to work with equidistant knots, we would be
probably constrained to take more than n+r+1 knots to get a solution - with
losgof its uniqueness! (Niirnberger, Theorem 3. 7, p. 109, gives a complete
characterization of those knot sequences, for which the so-called Hermite
interpolation problem has a unique solution. Our problem is of this type for
the function f.)



1.1 Algorithms for n=1

Let G: Bo<Ei<...>Ex<P<Ex+1<...<Er be given. We are Iookihg for a polygon
Ej+1

g on the knot sequence G with g(Eo)=0=g(E:) and I;:= E[g(t)dt = Zj+1 - Zj
)

(z0=0).
g is uniquely determined by the values on G.
We define |
u; = g(Ej) j=0,...k
wxam
= g(Ej) J=k+1,...r

H_] E_]+1 Ej j - 0, ,I'-l

The conditions for the definite integrals j are the following:
T = 5 Hiu + uet) j=0,..k

L= 5P - B(uk+ w) + 5Bkt -P)W+vin)  j=k
Ij= % Hi(uj + uja) j=k+1,...r

The u;jand v; can be determined recurswely upwards and downwards:

uo= 0, U= g - Wl 1£j<k
21 .
vi=(, Vi= Hj'E - Vi+l, r2j=2 k+1

With the values uk and vi+1 we can determine w:
21k - (P - Exjuy - (Ek+1 - P)viey
= Hx

Variation of P inside of an interval [Ex,Ex+1] shows that w is a linear
k+l Uk

function of P with gradient m = tijough the points (Ex,vx) and

(Ex+1,uk+1), if we continue the above recursions one step (see Figure I).
Ex + Ek+1

If we take especiaily P = ) in the middle of Ix, we obtain
21 ug Vi Uy VK
W=mes~ 2 2
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Figure 1. w is a linear function of P inside of [EK,EKM]

The example in Figure 2 shows that the shape of the solution polygon
depends strongly on the selection of the interval {Ex,Exs+1], which contains
the extra knot P. To the knots Eo,...,Es we have drawn the solutions to all

Ej + Ejtl . . ‘ .
extra knots Pi= = = for 4 2 j 2 0 . Below there is shown the unique

corresponding solution for step functions (splines of degree 0, without
extra knots). The latter is everywhere = 0 in contrast to the the former,
which all have two sign changes in (Eo,Es).

The calculation of all possible solutions to the extra knots in the middle of
the subintervals [Ex,Ex+1] needs only few operations (3r
multiplication/divisions and 4r additions to get the edges of the polygons),
since we must only calculate all ux, vk, k= 0,...,r and for every extra knot P«
an arithmetic mean.

It seems to be useful to determine the adequate solution after calculation of
all of them interactively or/and with appropriate topological criterions-as
for instance datloeda

g(P)2+ > g(Ei)? = minimal.
fary

If gj are the solutions with extra knot Pj in [Ej,Ej+1], then every linear

T Y
combination ¥ oygj with > 0y = 1 is a solution with the knot sequence
=1 o0 ,

| : : . 1<
Eo<Po<Ei<P1<Ea<...<Pr1<Ex, particularly the arithmetic mean 7 gi.
=0
Figure 3 shows some solutions of this kind with more than the minimal
number of extra knots from the example of Figure 2.



I. 2 Algorithms for n=2

There are two ways of placing the two extra knots P1, P2 needed now:
(a) G: EBo<Ei<...<Ex<Pi<Pa<Ex+1<.. . <Er rz1)
(b) G: Bo<Ei<...<Bi<Pi<Er+1<.. <BicPe<Eri<..<Er  (k+1 £ r 2 2)

(a) As for n = 1 we can compute the restrictions of the solution g on the
interval [E;,Ej+] for j # k recursively upwards and downwards.

0<i<k:
2

pi(t):= > ai(t - Bj)i = g(t) for t in [Ej, Es]
g

We have po(Eo) = 0 and po'(Eo) = 0 since g is in M(2,G).
Provided that we know the coefficients of pj1 we can determine
pi(E = pi1(E;) and py'(Ej) = pi-1'(Ey).
Thus we obtain
ajo = pj(Ej)
aji = pi'(Ej)

‘ Ej+1
3(zj41 - 74 1 .
ajp = (Z;{ig 2 ajH; - 5aj1Hj2 (from zj+1 - zj= _[pj(t)dt)
Ej

r-12j=>k+1: .
5 .
With qj(t):= 3 bi(t - Ej1)i = g(t) for t in [Ej, Ej+1] we can proceed as for j <
i=0
k by descending recursion. (Developping g; at E;forces to solve a linear
system with three unknowns. We can get this representation of ¢j from the
- above with help of g;"(E;) without solving linear systems in order to obtain
ar} uniform representation of the solution.)

We write the remaining three polynomials so, s1, s2 within [Ex, Ek+i] in' the
2

form sj(t) = D ciit - Pj)t with Po := Ex and P3:= Ex«1. Further we set Lj:=
i=0

Pj«1 - P, j = 0,...,2. Then the coefficients of the sjcan be determined by

solving the following linear system:
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We have arranged the unknown coefficients suchway that it is easy to

transform the system into a system with lélpper triangular matrix.

Qw‘;u
We can proceed in this manner also for n > 2 if the n extra knots are in the
same interval [Ex,Ek+1].

(b) For j < k and for j = 1+1 we can proceed as in (a). In order to determine
the remaining polynomials we have to solve a linear system with 3(1-k+3)
equations. Renaming the knot sequence Ex<Pi<Ek+1<...<Ei<P2<E1:1 to
X0<X1<...<Xm, m= 1-k+3, and with hj= xj+1 - xj, j=0,...,m-1, we get the

system shown in Figure 4 for the coefficients of the polynomials si(t) = .
Zcp(t x;)i. It can be reduced to a subsystem for the quadratic coefficients!
1=0

which is nearly lower triangular. Having solved this reduced system, the

VN

Py

linear and constant coefficients are obtained by forward insertion. See
Figure 5.

1.3 Algorithms forn=3

As already mentioned the placing of all extra knots in the same interval is
unproblematic for computation. As the example in Figure 6 shows, this
way of placing the extra knots need not correspond to the intuitively
imagined shape of the solution already for small n! In all other cases we



have to solve linear systems with (n+1)(1-k+n+1) equations, when [Exk, Ei+]
is the smallest subintervald of the knot sequence Eo<Ei<...<Er, which
contains all extra knots in order to obtain the polynomials within [Ex, Ew].
(The polynomials outside of [Ek, Ei+1] can be determined recursively as for
n=2.)

The part of the system matrix, which correspon%to the smoothness
conditions, is thereby always of the same form, whereas the part
corresponding to the integral conditions varies according to the distribution
of the extra knots.

Figure 6 shows some solutions of the same interpolation integration
problem for n = 0,...,3. The placing of all three extra knots equidistantly in
the same interval [0,4] for n = 3 gives a solution with an oscillation, which
obscures the conception of the modifications as a ritardando. (This is
already the case for n = 2, if both extra knots are equidistantly taken in [0,

41.) It(alsq\:an ‘be seen that the maximal elongation from 0 becomes larger

for larger n. It is probably not very reasonable to use spline functions of
degree > 2 to solve our tempo modification problems.



I B-splines

Given a spline function by its piecewise polynomials contains a lot of
information: In the case of M(n,G) we need m(n+1) coefficients to describe
an element in a space of dimension m-n.

The representation of spline functions as linear combinations of B-splines,
which are spline functions with minimal support, is very common because
of its numerical stability.

Theorem
M(,G) has a uniquely determined basis of B-splines B, j=0,..., m-n-1.
The Bj are completely characterized by the following properties (B1)-(B3):

Bi()=0  tin R\(xj, Xjm+1) (B1)
Bi()>0  tin (xj Xjne1) (B2)
Xi+n+l

J Bj(t)dt = 1 (B3)
Xj

For a proof of existence and uniqueness of splines fulfilling (B1)-(B3) see
for instance Niimberger, Theorem 2.2., p. 96.

Remarks
(0) Some examples of B-splines are shown in Figure 7. -

(1) The one dimensional vector space spanned by one of the B; is itself of
the type M(n,G) _for Gx_G} D XX XL

(2) Provided the existence of B-splmes it is easy to see that they have
minimal support:

Take to the contrary a spline function s of degree n with support [x5,xK],
k<j+n+1, ie. s(t)=0 for t in R\(xj,x«). This imphes s in M(n,G;) since
s®(Xjsae1) = 0, k = 0,...,n-1 and therefore s= OLB B is strictly p051t1ve on
(Xj,Xj+n+1) particularly in (Xk,Xjsnr1). This implies o = 0 and supp(s)= Qj |

(3) Because of dim(M(n,G)) = m-n = #{B}lij¥0,..;,m-n~1} it is sufficient to
show that the B are linear independent in order to demgqstrate that they
form a basis of M(n,G):



m-a-1
SoBi(t) =0 => 04=0,j=0,.,m-n-1

i=0
Take t in (xo,x1). This implies co= 0, since the ]£§l for j = 1 disappear on
[x0,x1]. The same argument now for t in (x1,x2) implies o =0, etc.

(4) The B-splines B] can be determined using divided differences
(Niimberger, Theorem 2. 9, p. 99) or by the following recurrence relation
(Niimberger, Theorem 2. 11, p. 101) due to de Boor (1972) and Cox

(1972):
n+l  1-%j Xjtn+l - €

n-1 n-1
B ( ) = n L Xjin+l - X_]BJ (t) + Xj+el - Xijﬂ(t)]

(5) The often used normalized B-splines Nfzijﬂjf?_j]%?, j=0,...,m-n-1 also

form a basis of M(n,G) (basis transformation with diagonal matrix) and can
be determined similarly (Niirnberger, Theorem 2. 14, p. 103).

(6) For equidistant knots xj+1 - Xj = h, j = 0,...,m-1, Bj. can be obtained
from B} by translation along the x-axis:
Bj()= Bt - kh) |

(7) Let G* be a knot sequence, which is a refinement of G. Then M(n,G) is
a subspace of M(n,G*). The problem is then to calculate in an efficient way
the B-spline coefficients of a spline s in M(n,G) related to G* from the
coefficients of s related to G. There are algorithms for the insertion of one
extra knot (Boehm, 1980) and for the insertion of several extra knots at a
time (Cohen et al., 1980) described in Dierckx, p. 16 f. These knot
insertion algorithms can be used in order to find the B-spline representation
of the sum of spline functions with different knot sequences (determine the
coefficients of the functions to be added for the union of the knot
sequences and add corresponding coefficients). If we describe reciprocal
tempo functions and their modifications in the basis of B-splines, we are
often in tn@SIruatlon to add splines with different knot sequences.

Usmg Tayior polynommls instead of B-spline representations, a refinement
of the knot sequence forces us to evaluate the piecewise polynomials and
their derivatiées related to G for all extra knots in order to obtain the
piecewise representation of a spline related to G*.
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(8) There are also formulas (de Boor, Lyche&Schumaker,1972/1976) for
computing the B-spline representations of the derivatives and of the
indefinite integral of a spline function from its B-spline coefficients, see
Niirnberger, Theorems 2.17 /2. 18, p. 104 f.

(9) The solution of spline interpolation problems in the B-spline
representation leads to bend matrices for the coefficients o; of a spline s(t)
= Zoch?(t). For an interpolation point T in (xk,xx+1) there are only n+1
indices j (j = k-n,....k) with Tin supp(B) and if T = x« for only n indices j
(j=k-n,....k-1) we have Bj(t) = 0.

11.1. Svnchronization and B-splines

To synchronize the reciprocal tempo function R to a reference reciprocal
tempo function Ro on a symbolic time interval [A,B], their difference
function g = R - Ro must fulfill the condition

B

A[ gdt=0 (Syn)

We consider as previously only modification functions g in M(n,G) for an
appropriate knot sequence G : A=Fo<Ei<...<Em=B with m > n+1. (m £n+l
only allows g = 0) |

Lemma |
The set Syn(n,G) of all spline functions in M(n,G), which fulfill (Syn) can
be described as follows:

m-n-1 man-1

Syn(n,G) = {g= zoth}l(t) [ zoq =0}
=0 =0

Syn(n,G) is a vector space of dimension m-n-1 (isomorphic to M(n+1, ).

This follows immediately from the property (B2) of B-splines and from the
i

linearity of integration. (g in Syn(n,G) further implies £(t) := Afg(s)ds. in

M(n+1,G).) '

11



I1. 1. 1 Interactive definition of synchronizing tempo modifications

There are several possibilities of doing this:

(1) Input: 00,...,0k, 0 <k £ m-n-2
k k
Output:  gr= 2,048} - 0)Bie1)
=0 =0

The system always returns the spline in Syn(n,G) with minimal support.
The visualization of the gk helps to corztrol% further input. Finally we set

g:= gmn-2. !
The sequence of the B-spline coefficients refiect the shape of a sphne

) ffl{&:ﬁ (f5y i
function in a rough manner: G R e i

The number of sign changes in the sequence (o) is less or equaI 0 the b

number of sign changes of g = ZOLJB (Niirnberger, Corollary 2. 22, p.
107).
In the basns of the normahzed B»sphnes N we can use the correSpondmg

polygon defined on the knot sequence

jnel

n—ll-l 2}31 by the edges (xj, Bj) (completed with (A, 0) and (B, 0))
i=j

(cf de Boor, p. 87f) .
Instead of defining the «lo,...,0k, the user t’herefc\)“re could“enter the B-
polygon up to Pk, and the system returns the B\hpdfygon of gx on [A, Ekmiz]
or a representation of gk.

B-polygons are used in CAD, because they have shape perserving
properties: positivity, monotony, convexity, concavity in relation to the
approximated spline function (de Boor, p. 86).

(2) In M(n,G) it is possible to define a spline successively (via "mouse
klicking"):

Because of the strong smoothness condition at the boundary Eo, the
restriction of a spline function g in M(n,G) on a submterval], (Eo,Ex], k <m-
n-1, is uniquely dfermined by the values g(E1),....g(Ex).

We can therefore determine the gk in Syn(n,G) from above directly, if the
user enters the values g(E1),.. .,2(Ex+1). The coefficients 0,...,0 are
obtained by solving the followmg linear system by forward ellmmatlon

12
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Then gk = 3 048] +\Bis with Y= - 0.
=0 j=0

Figure 8 illustrates the method for n=1.

The method must be altered, if we go away from previously fixed knots. In

order to determine the coefficients oo,..., Ok, Y the knots Ek+2,...,Exns2 must
" be known in advance, although the restrictions of gk on [Eo,Ex+1] is
uniquely determined by the values of gk on the knots Eo,...,Ex+1. In other
words, some of the o are influenced by modifications in the knot
subsequence Ex+2,...,Exen+2 (namely for j = k-n-1,...,k), since the
corresponding B-splines are altered.

(3) A method with variable knot sequence
Input: (E1, g(E1)),...,(Ex+1,8(Ex+1)) (A=Eo<Ei1<...Ex+1<B)
QOutput: gk in Syn(n,Gx) on the knot sequence Gk:

Eo<Ei<...<Fra=De<Di<...<Dn+1$B with Dj= Ei+1 + jh

. Ex+1-E0 B-Ek+1
andhzmln{ k+1 > k+1 }.

After input of new (Bj,g(Ej), j > k+1, the automatically. .deﬁn@gu_Dl,...,Dnﬂ

must be replaced. As mentioned above, thete. must be computed new B-

splines‘dfter each new input. It seems to be more efficient in this case to
calculate e:xpli(:itgr representations of the restrictions of gk to the intervals
[E;,Ej+1]. The corresponding Taylor polynomials up to [Ex,Ex+1] can be
obtained recursively, and they need not be altered after new input.

13
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For the remaining polynomials on the equidistant knot sequence
Do<..<Dns1 there is to solve a lmear system of the same type as described

™ e Du+1

forn=2in Chapter I 2 (a) (gk must fulfill the integral condition J gr()dt =

Ek+1 d e ?‘&' Fgﬁq S f‘m‘é
Ejgk(t)dt) The occuring (sparse) system matrix depends only on n and h,
0

& ‘r?‘ A 3

and it can be inverted or factorized (using LR-decomposition) for a given n
as a function of h.
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Polgonale Tempofunktionen

1. Problem
T z
yo/ i
X0 x0-+h
TX) =yo + Z‘:}),"@(x—xo) x in [x0,x0+h]
X0-+h

Gesucht z (z>0), so dass f"»"r%;ﬁdx =1 fiir einen ?orgegebenen Wert L.

X0
Definiere
h .
I(z) = ;ﬁ[ln(z) - In(yo)] fiir z£yo
h ' .
J(yo) =45

Fiir das gesuchte z muss gelten J(z) = L
Es gilt J(z) -> 0 fiir z -> o und J(z) -> oo fiir z -> O und J ist stetig. Unser
Problem hat deshalb fiir alle I > 0 eine Losung.

Verfahren zur numerischen Bestimmung von z:

1) Falls I = ':"?g , dann ist z = yo die gesuchte Losung.

2) Andernfalls wird die Nullstelle {  yovon
f(z) = (z-yo)l - (In(z) - In(yo))h
mit dem Newton-Verfahren
f(zi)
Zi+l= Zi " f’(Zi)
‘berechnet. Dann ist { die gesuchte Losung mit J(C) =1
Zur Wahl des-Startwertes zo: h
2

Es st £(2) =1 -2 und £(2) =53 .

Z

Die Funktion f ist also linksgekriimmt und hat-ihr Minimum bei z=T.



h . i h
Ist yo<T ,dann konvergiert das Newtonverfahren fiir alle Startwerte zo > T

gegen die Nullstelle {. (Wegen der Linkskriimmung von f ist z1 > {, und die
- weiteren Folgeglieder bilden eine monoton fallende Folge).

h . : h
Ist yo>T ,dann konvergiert das Newtonverfahren fiir alle Startwerte zo <7

‘mlt f(zo) > 0 gegen L. (Die zi bilden dann wegen der Linkskriimmung von f
eine monoton wachsende Folge). zo muss also nur geniignd klein gewahlt

h .
werden. (Beginne versuchsweise mit zo = 0.5 7 und verkleinere falls néstig bis

f(zo) > 0, um einen geeigneten Startwert zu finden.)

2. Probiem
ya
o / \ y1
ho h1
X0 u X1
T(x) =yo+ he (x»xo) X in [xo,u]
T(x) = y1 + T(x-x1) X in [u,x1]

X1

Gesucht z (z>0), so dass j’fa—)dx = ] fiir einen vorgegebenen Wert .
X0

Definiere

1 . -
g(z) :=ho n(zl - lyno(y()) + h1ln(zl - l;l(yi) -1 fiir yo# z # y1,

Falls yo £ y1:

y0) - In{y1)
g(yo) == 5o+ hi Ing y)o ;11( -1
n(Xl) In(xo)
Fallsyo=y1:
ho i

g(yo) y{) vty y1 = I



Die Funktion g ist stetig, g(z) -> oo fiir z -> 0 und g(z) -> -Ifiir z -> oo, Ferner
ist g streng monoton fallend (Die im Ausdruck fiir g auftretenden Quotienten
konnen als Sekantensteigungen zur Logarithmusfunktion interpretiert
werden). g hat also genau eine Nullstelle {. Sie kann mit dem
Bisektionsverfahren (Einschliessen der Nullstelle durch fortgesetzte
Intervallhalbierung) bestimmt werden. Das Auffinden geeigneter Startwerte
ist wegen der Monotonie von g einfach. z = { 16st unser Problem.

Die Funktion g ist auch an den Stellen yo und y: differenzierbar, so\gass im
Prinzip auch mit dem Newtonverfahren gearbeitet werden konnte. Es scheint
mir schwierig, einen geeigneten Starwert anzugeben, so dass das Verfahren
mit Sicherheit konvergiert. (Ein Kandidat fiir einen Startwert ergibt sich
moglicherweise aus der Losung der Aufgabe mit polygonalen reziproken

Tempofunktionen:

1, 1 1 I, ,1 1 . ho + hi
I= §h0(§5 +25) + 5+ y_l) ergibt zo = " ho hi-
Yoyl
Falls sich zo > 0 ergibt, ist jedenfalls zo > (. )

Das 1.Problem kann natiirlich fiir die Funktion g(z) = J(z) - 1 analog mit
Bisektion geldst werden. Das Bisektionsverfahren konvergiert allerdings
langsamer als das Newtonverfahren.

Es ist zu bemerken, dass unsere Aufgaben fiir beliebige 1> 0 immer
(eindeutig) 16sbar sind. Das Problem negativer Tempi kann hier im
Unterschied zur analogen Problemstellung bei polygonalen reziproken
Tempofunktionen nicht auftreten. Der Rechenaufwand ist allerdings durch die
benotigten iterativen Verfahren zur Nullstellenbestimmung erheblich grosser.
Ferner sind bei polygonalem Tempo die in meinem Paper untersuchten
Zeitflussmodifikationen e(Ei) -> e(Ei) + zi nicht unabhéngig von einer
zugrundeliegenden Referenzinterpretation beschreibbar. Bei Anderung der
zugrundeliegenden Refetnztempofunktion miissen die den obigen
Zeitflussmodifikationen entsprechenden Tempomodifikationen neu berechnet
werden.



